Definable Genericity and Outer Models
نویسنده
چکیده
2. Definable genericity . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Levels of class genericity . . . . . . . . . . . . . . . . . . . . . 2 2.2. Equivalents of definable genericity . . . . . . . . . . . . . . . . . 3 3. Rudimentary extensions . . . . . . . . . . . . . . . . . . . . . . 5 3.1. Two languages . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2. Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3. T qf and the quantifier-free outer model language . . . . . . . . . . 9 3.4. The V̂α[[A]] hierarchy . . . . . . . . . . . . . . . . . . . . . . 13 3.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4. (†) and the main theorems . . . . . . . . . . . . . . . . . . . . . 15 4.1. The axioms T and (†1) . . . . . . . . . . . . . . . . . . . . . 15 4.2. The inductive definitions Γn and (†2) . . . . . . . . . . . . . . . 16 4.3. The main theorems . . . . . . . . . . . . . . . . . . . . . . . 17 4.4. Independence of (†1) and (†2) . . . . . . . . . . . . . . . . . . 18 5. Proof of Theorem A . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1. The Γn’s and T 0 . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2. The partial ordering P . . . . . . . . . . . . . . . . . . . . . . 19 5.3. Counterpart symbols and the forcing language . . . . . . . . . . . 21 5.4. T and the ∃n forcing relation . . . . . . . . . . . . . . . . . . 23 5.5. Completing the proof . . . . . . . . . . . . . . . . . . . . . . 26 6. Proof of Theorem B . . . . . . . . . . . . . . . . . . . . . . . . 26 6.1. Five observations . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2. Counterpart symbols and the outer model language . . . . . . . . . 30 6.3. Sn(α) and the verification of (†1) . . . . . . . . . . . . . . . . . 32 6.4. Verification of (†2) . . . . . . . . . . . . . . . . . . . . . . . 33 7. Partial genericity . . . . . . . . . . . . . . . . . . . . . . . . . 34 8. 0 and (†1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 8.1. Proof of the theorem . . . . . . . . . . . . . . . . . . . . . . 39 8.2. Requirements on the construction . . . . . . . . . . . . . . . . . 41 8.3. Verification of (†1) . . . . . . . . . . . . . . . . . . . . . . . 43 8.4. Conditions embodying generic filters . . . . . . . . . . . . . . . . 45 8.5. Construction of the fk’s . . . . . . . . . . . . . . . . . . . . . 47 8.6. Verification of the construction . . . . . . . . . . . . . . . . . . 49 8.7. Residual indiscernibility . . . . . . . . . . . . . . . . . . . . . 54
منابع مشابه
Outer models and genericity
1. Introduction Why is forcing the only known method for constructing outer models of set theory? If V is a standard transitive model of ZFC, then a standard transitive model W of ZFC is an outer model of V if V ⊆ W and V ∩ OR = W ∩ OR. Is every outer model of a given model a generic extension? At one point Solovay conjectured that if 0 # exists, then every real that does not construct 0 # lies...
متن کاملStability and stable groups in continuous logic
We develop several aspects of local and global stability in continuous first order logic. In particular, we study type-definable groups and genericity.
متن کاملGroups, measures, and the NIP
We discuss measures, invariant measures on definable groups, and genericity, often in an NIP (failure of the independence property) environment. We complete the proof of the third author’s conjectures relating definably compact groups G in saturated o-minimal structures to compact Lie groups. We also prove some other structural results about such G, for example the existence of a left invariant...
متن کاملDefinable Subsets in Covering Approximation Spaces
Covering approximation spaces is a class of important generalization of approximation spaces. For a subset X of a covering approximation space (U, C), is X definable or rough? The answer of this question is uncertain, which depends on covering approximation operators endowed on (U, C). Note that there are many various covering approximation operators, which can be endowed on covering approximat...
متن کاملOn an Open Problem for Definable Subsets of Covering Approximation Spaces
Let (U ;D) be a Gr-covering approximation space (U ; C) with covering lower approximation operator D and covering upper approximation operator D. For a subset X of U , this paper investigates the following three conditions: (1)X is a definable subset of (U ;D); (2) X is an inner definable subset of (U ;D); (3) X is an outer definable subset of (U ;D). It is proved that if one of the above three...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004